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Abstract. Among many proposed held rheones for lhennal phenomena thenno-held dynamics 
(m) is a very useful and simple loo1 lo study non-equilibrium many-body systems, especially 
for a mmplicated system composed of several subsystems at different lhermal equilibria A 
complete perturbative calculation scheme in m for such systems will be presented. In lhe m 
method. explicit investigation will be made of lhe energy loss rate (UR) and resistivity of hot 
elecmns in semiwnductors. Our ELR formula is shown 10 be different from that obtained by 
the Keldysh method. The possible ambiguity in lhe Keldysh method is discussed. 

1. Introduction 

The present paper is to address the following questions: when the electrons in 
semiconductors are heated up by a very short laser beam pulse, what will be (1) the 
dynamical resistivity, and (2 )  the energy loss rate (U) of the hot electrons? 

The study of hot-electron energy relaxation and dynamical resistivity has been of great 
interest among experimentalists in the past [l]. An early theoretical description of the ELR in 
the hot-electron system is that of Kogan [Z] who used Fermi-golden-rule theory. Recently, 
the Keldysh Green-function method was used by Dharma-wardana [3,4] to study the ELR 
of hot electrons in semiconductors, in order to study the effect of the coupled optical mode. 
His results did not agree with the earlier results claimed by Das Sarma et al [5 ] ,  who 
found that the coupled mode is responsible for a significant increase of ELR at low electron 
temperatures. Upon inspection, however, I found that the Keldysh method might need some 
modification in order to be applied to the hot-electron pmblem in the wide range of electron 
temperatures concemed [6]. 

This paper is a theoretical study of the dynamical properties of hot-electron system. I 
try to provide an altemative Green-function method, rherm-field dynamics (m), to study 
the dynamical resistivity and ELR of hot electrons in condensed matter. I shall derive the 
mathematical formulae for the resistivity and ELR in the TFD framework. I show that my 
expression for U R  is somewhat different from that derived from the Keldysh method. In 
order to facilitate the readers’ judgement of the discrepancy between the Keldysh and m 
methods, I shall first briefly discuss some important aspects of the Keldysh method, followed 
by a detailed formulation of TFD general non-equilibrium problems. My calculation of the 
dynamical resistivity and ELR will be carried out based on the formulation presented. The 
possible limitation of the Keldysh method will also be pointed out. Here I would like to 
mention that in his recent NATO report [6] and in [4], Dharma-wardana also noted the 
discrepancy between the TFD approach and the Keldysh approach. 
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The present paper thus has the following &cture. In'thk section I try to make a few 
comments on the Keldysh method. The0 I shall discuss different representations (denoted 
by different a values) of TFD in the next section, followed by h e  detailed formulation of 
01 = 4 TFD for non-equilibrium situations in section 3. The application to hot-electron 
problems will be presented in section 4. A final summary concludes the paper. Those who 
are already familiar with the Keldysh method and the basic concepts of the TFD mkhod can 
start reading from section 3. I choose to separate section 3 from section 4 simply because I 
hope that the general formulation in section 3 can also be applied to other non-equilibrium 
many-body problems. 

An early attempt to study many-body systems at finite temperature by using quantum- 
field theory was made by Matsubara in 1955 [71. In his method, the temperature is regarded 
as an imaginq time resulting in a discrete summation over frequencies. However, the 
applicability of Feynman rules in momentum space in the Matsubara method was not 
clarified until two independent works by Abrikosov et 01 [SI and Umezawa er a1 [9]. The 
possible application of the quantum-field theory to non-equilibrium thermal systems in the 
linear-response approximation was later pursued by many Scientists, Martin and Schwinger 
[IO], Kadanoff and Baym [ I  I], Keldysh [IZ] and Takahashi and Umezawa [13], to name 
just a few. Among the theories proposed by these physicists, the Keldysh method (also 
called the closed-path integral method) [I21 is most widely used. It has been applied 
to transport phenomena, superconductivity, spin systems, laser systems [ 141, hot-electron 
systems 13,151, quantum wires and so on. In contrast, m, invented by Umezawa and 
his collaborators in the early 1970s 113, 16,171 is less well known to condensed matter 
physicists. In the present paper I will show genefal readers that TFD is a very simp16 
and useful tool not only in dealing with equilibrium states [ I s ,  191, but in the study of 
non-equilibrium many-body problems. 

In order to appreciate the simplicity of the TFD approach, let us first discuss briefly the 
Keldysh method. A good review of this method can be found in [ZO]. The core,of the 
application of quantum-field theory to condensed matter is to calculate the Green function 
as follows: 

G(xi - XZ) = -i(T(A(xl)B(xd)) (1.1) 

where ( A )  = Tr[pA] with p being the thermal density operator, i.e. p = exp(-@H). All 
quantities &e in the Heisenberg representation. T represents the usuai time ordering. After 
choosing a proper time contour, the above Green function can be rewnhen as a closed-path 
Green function which can be put into a 2 x 2 matrix form, 

where GR and CA are the retarded and advanced Green functions respectively, and 
G K ( x l , x z )  = -i([A(x~)B(x~))]*). n o  main difficulties may be associated with this 
approach. First, the calculation of the Dyson equation is non-trivial for general non- 
equilibrium cases. For example, the off-diagonal term in && Dyson equation reads 
GK = C R G A [ ( G ~ / C ~ G ~ )  - EK1, which is not easy to calculate. Second, the choice of the 
time path depends on the thermal parameter (please note that in the equilibrium case only, 
f3 = l / k ~ T ) .  This is a crucial poini with regard to the transform ofthe density matrix from 
the starting one p (= exp(-BH)) to that in the interaction picture, i.e. po = exp(-@HI). 
Here H is the total Hamiltonian in the Heisenberg picture, and HI is the free Hamiltonian 
in the interaction picture. In a multi-temperature system this transformation may become 
ambiguous. We will come back to this point later. 
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2. TFD and its different representations 

Although there are many papers and books on m, I choose to describe “FD heuristically 
in this section so that general readers could have some primitive ideas about and will 
not have to read references back and forth. Those who want to know the details of the 
foundation of TFD are referred to the book by Umezawa [17]. 

Suppose Uk and U: are annihilation and creation operators respectively of a particle with 
momentum k on a vacuum 10) at zero temperature: atlo) = o and (O&k[O) = 0. At finite 
temperature the thermal population of the particle makes (&) # 0. In the Matsubara or 
Keldysh methods, these brackets denote thermal averaging. When we compare this with the 
calculation of the order parameter in superconductivity, it is suggestive to define a thermal 
vacuum, lO(j3)), and its conjugate (O(p)I and we hope that the thermal occupation can 
be calculated from a simple operator algebra, i.e. nk = (o(B)l&lo(,8)). At equilibrium, 
as is well known, nk = l/(exp(B<k) I 1) (the sign depends on whether the particle is a 
fermion or a boson). If we can define the thermal vacuum IO@)), then obviously uk, U: 

are not the annihilation and creation operators for this thermal vacuum, but experience with 
superconductivity gives us a hint that we may define a new set of annihilation and creation 
operators f fk,  a: on the thermal vacuum, i.e. 

aklO(p)) 0 (o(@)la: 

The relation between & , U ; )  and (Ut, CY:) should bear a similarity to the Bogoliubov 
*sfomahon in the superconductivity. This idea is accomplished by introducing the 
‘ghost’ operators or tilde operators, i.e. doubledegree freedom. For any operator A, there is 
a tilde operator d to associate with it. Then the total Hamiltonian is H = H-H. Thus in m, 
thermal averaging is replaced by a simple operator calculation. For the multi-temperature 
many-body system, the thermal vacuum is defined as l0(BI, 62,. . .)) = lO(B,))@l0(,9~)) . . ., 
and the annihilation and creation operators of different subsystems can be defined in the 
different thermal vacuum states. In WD, the thermal vacuum can be described’as follows. 
In the equilibrium state, it was characterized by the given temperature (B = l / k ~ T )  and 
usual equilibrium statistics; however in the non-equilibrium state, the parameter j3 does 
not usually correspond to a specific tempehture. In the latter case, the thermal vacuum is 
characterized by the thermal occupation number nk which may differ from either the usual 
bosonic or fermionic distributions. 

The tilde operation can be summarized as 
- *  

(AB?= AB,(cAj=c*A,A=uA 

((o(B)I, iw)}i= ((o(B)I. IO(B))). 

In the above c is a c-number and u = 1, - I  for fermions and bosons respectively. 
The relation between (ub,cii) and (q.&:) is through a so-called thermal Bogoliubov 
transformation. Without any specification. we write this relation conveniently as 

6 is the thermal Bogoliubov transformation matrix, which should be determined by the 
condition nk = (~ (p) lu fuk l~(p) ) .  Because m is virtuilly an operator formalism, we can 
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have different representations with different rotation in the Fock space. Generally matrix B 
is written as 

with f (k) = n k / ( l  + Unk). Therefore different representations of TFD can be classified by 
the factor ci(l > CY > 0). There are two commonly used representations of m: 01 = 1 and 
CY = 4. The 01 = 1 m has the merit that it does not need the Gell-Mann-Low theorem as 
in the Keldysh method [17]. 

It is believed that the OL = 1 representation is the most convenient one in handling 
non-equilibrium many-body system. However, in my opinion, it has some difficulties. The 
prominent drawback in the CY = 1 representation is that the corrected phonon propagator 
cannot be easily calculated. To be more specific, I first write out the bare Green function 
for the phonon field 4, i.e. iD(x - y )  = ( O ( ~ ) I T [ ~ ( X ) ~ ( X ) I I O ( ~ ) )  

(2.3) 

where the superscript T means the transpose operation. In this paper I use the following 
convention: k = (k, ko): 6 = O+; r is the third Pauli matrix. We reserve for the phonon 
energy spectrum, and €1. for the electron energy spectrum. The Green function of the phonon 
is denoted by D and that of the electron is denored by G. We ignore the electron spin index 
whenever appropriate. In the CY = 1 representation. the thermal doublets iP, 6 are defined 
as 

so the ( 1 , l )  component of the Green function corresponds to the usual causal Green function 
as in other methods. The Dyson equation is written as 

D = I/(Di' +E). 

It will not be difficult to see that the calculation of D;', i.e. the inverse of the bare- 
phonon Green function matrix in (2.3). is not at all easy to achieve. This makes practical 
application of CY = 1 TFD in solid-state problems rather difficult. Therefore we use the c1 = 
representation. We will formulate TFD in the CY = 4 representation so that it is applicable 
to non-equilibrium situations. 

3. TFD in a= 

In this section I will formulate the Green-function method in m in such a general way 
that it can be used in the next section to study the ELR and dynamical resistivity of hot 
electrons in semiconductors. Due to the practical problem with the 01 = 1 representation 
mentioned earlier, I shall use the a = f representation. This representation of TFD was 
actually the original TFD when it was first proposed for equilibrium states. The details of 
TFD at equilibrium are described in the previous paper [18]. It has been used in many 

for non-equilibrium states 
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areas, such as high-T, superconductivity [21] and surface infrared absorption [22,23]. In 
this section, I extend our discussions to the general case, which may be either equilibrium 
or non-equilibrium. 

In the a = f representation, the thermal Bogoliubov transformation reads 

for bosons and 

for fermions. Although there are four operators a. at, 6 and (it in the above, we only need 
to write out two since the other two can be obtained easily from either complex conjugation 
or tilde operation. Here 

C; = I + d i  

d i  = n B  

C: = I - d2  F 

dz = nF 

in which nB, nF can be any boson and fermion thermal occupation functions. For the 
equilibrium state only, we have ne = l/[exp(bok) - I]  and nF = I/[exp(,%) + I]. 

The two-point Green function is 

(3.3) 

where JI and Q are electron and phonon fields. The thermal doublet is defined as 

J I ’ = J I  JI*=p 
61 = Q  62 =p. 

In TFD, it is quite convenient to start with the timeordered Green function. The retarded 
or advanced Green function is easily obtained by the following substitution: 

GR(k) = G ( k ,  ko + i6) 

GA(k) = G ( k ,  ko -is) 

etc. 
Using the relation in (3.1) and (3.2), one can easily obtain bare Green functions 
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where 

To make our argument applicable, we need to prove that the corrected Green function takes 
the same form as the bare one. We start with the phonon's propagator. The Dyson equation 
reads 

D(k) = I/[D,'(k) + W4l. (3.6) 

We ignore the superscript index of thermal doublets. All the quantities are in 2 x 2 matrices 
unless otherwise indicated. The wonderful thing in 'rm is that the form of the matrix plays 
a very important role in simplifying the calculation. If we observe the following facts: 
the effect of electrons (fermions) on phonon propagators originates only from electron-hole 
bubbles, the symmetric properties of matrices UB. UF, it is easy to see that no matter what 
order or what type of Feynman diagram we are calculating, the self-energy always takes 
the following matrix form: 

(3.7) 

where ER is a real quantity that contributes to the energy renormalization. Then the simple 
calculation leads to 

DW = U B ( ~ ) T ~ :  - {wm - i [v(k)/2oR(k)lTjZ~-'~e(k)  (3.8) 

where the 'super' matrix UB is calculated as 

and C i  = 0: + 1 with 

in which 

y2 = (E# - (E#. (3.9) 

The renormalized phonon energy is w i ( k )  = m: - X:n(k). So the relaxation of phonons, 
i.e. y .  is represented in (3.9). The physical meaning of the minus sign can be found, for 
example, on page 36 of [ 1 I]. 

For the electron causal Green function, we perform a similar calculation to obtain the 
matrix form for the self-energy 

(3.10) 
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(3.11) 

where C: = 1 - Dz F and 

with 

Y2 = (Ed2 + (E2)2. 

It is easy to check that at the one-temperature equilibrium case, the present Dyson equations 
recover'those equations described in the previous paper [18]. 

It is interesting to notice that the corrected Green functions in (3.8) or (3.1 1) share the 
same structure as the bare Green functions in (3.4) and (3.5). This is unique for the TFD 
method. 

Finally, I shall emphasize that T m  does not require that all the propagators in a Feynmam 
diagram be at the same temperature. The different propagators may be defined in the 
different sub-thermal vacuum states. The bare Green function takes a sandwich form, i.e. 
udou or ud,ut, depending on whether it is bosonic or fermionic with do being diagonalized. 
In order to calculate the corrected Green functions. one needs simply to cast (or renormalize) 
the corrected Green functions into the sandwich forms as in (3.8) or (3.11). Please note 
that the so called supermanices US and UF, functions of u g  and UF, are determined by 
imaginary parts of the self-energy, which means that the quasi-particle is subject to thermal 
dissipation at finite temperature [17]. 

4. ELR and resistivity of hct electrons 

Now we consider the practical applications of the formalism established in the last section. 
A very good application is short-laser-pulse-heated metals in which the electrons can be 
heated to a higher temperature (c) while the ions remain at a low-temperature (Ti). Much 
experimental [I]  and theoretical 12.5.3.241 work has been done in the field to understand 
the ELR and the resistivity of hot electrons in a relatively cold medium. The scenario is 
quite simple: due to the intense short laser beam, the electrons are heated up to a quasi- 
thermal equilibrium state characterized by temperature 'f, because of the strong Coulomb 
interactions: because the impulse is so short we can be fairly safe in assuming a slow 
change of temperature. i.e. we assume the steady-state approximation; due to the weak 
electron-phonon interaction in most metals, linear-response theory is applicable. After 
these considerations, such a laser-heated system can be pictured as a system composed of 
two subsystems at different quasi-equilibria. In our previous papers [18,25] we discussed 
the resistivity and ELR in such a system to the zeroth order, i.e. the bare phonon and 
electron Green functions were used. In 1251, we provide a Boltzmann kinetic equation 
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approach to the ELR problem. In this paper, in order to compare with other work we shall 
demonstrate how to include the correction to the phonon Green function due to the creation 
of electron-hole pairs. The correction to the electron propagator (relatively unimportant) 
will be left for future work, because it requires self-consistent calculations of both phonon 
and electron propagators if we try to consider both corrections at the same time, which 
is beyond the scope of this paper. The thermal vacuum lO(B)) in this case is defined as 
lo(B)) = lo(&)) @ lo(/%)) With pi = I / k s z ,  b e  = I/kBTe. 

4.1. Resistivity 

The electron-phonon interaction Hamiltonian is written as 

He-p = 1 dzx - n & ( W  (4.1) 

with coupling constant g(d)exp(ikx) = gi exp(ikx) and ne = (O(fi)l$t$lO(B)). 
The detailed formulation for the problem was presented in [I81 and [Z], where the 

calculation was performed only to zeroth order. The dynamical resistivity R(w) is related 
to the relaxation time r-'(o) as [26] 

~ ( o )  = (m./e2)n.r(w). (4.2) 

r-' = (mLo/nee2)  Im n:' (0) 

r(o) is calculated as 

(4.3) 

where.nA' is the (1.1) component of the retarded current-current correlation function 

in  11 (w) = J d  exp(iot)(~(~)~~[j,(t)j,(~)~~~(~)). 

Simple calculation leads to 

where ix"(t) = (O(B)IT[p(r)p(O)llO(B)) is the ( 1 , l )  component of the density-density 
Correlation function (response function). 

- - -  _ _ _ _ -  - - - - -  

Figure 1. The correction io the phonon propagator. "k double bmken lines are the comcted 
phonon Green function. The single broken line is the bare phonon propagator including yp. 
while the full curve is the electron Green function. This corrected phonon is often refemd to 
as the coupled mode. 
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We now take into account the electron-hole pair bubble effect on the phonon propagator 
(figure 1). Then the Green function of the phonon becomes 

DW = uB(k)(r/[ki - (ox - i[y(k)/zo~]r]*])uB(k) (4.5) 

with 

(UAZ(k))Z = (U;'(k))Z 

~l[(yp(k)[l+2nB(ko.~i)] +ye(k)[ l+2ne(b3~c) l j /y(k) -  13 

and 

(UA'(k))Z = (U?(k))' = (UAZ(k))* + 1 

and 

y 2 ( k )  = v;(k) + &k) + 2 Q ( k o ) W ) y p ( k )  (4.6) 

in which 

~ ( k o )  = 1 + anB(k07 ~,)nB(ko, ~ i ) [ exp(~ iko /~ )  - ~ X P ( B M ~ ) ] ~ .  (4.7) 

So Q is a factor characterizing the effects of different thermal equilibria on the relaxation 
of phonons. Clearly when pi = Be, Q becomes unity. Dhanna-wardana [U] suggested that 
this factor may be due to the renormalization of thermal baths at two different temperatures. 
In the above equation, y;'. responsible for the hot-phonon effect, is the lift-time of phonons 
contributed from the phonon-phonon interaction. Ve(k) = 2$Imx(k). To derive (4.3, one 
simply needs to diagonalize the Dyson equation. 

If we only consider the modification on the phonon propagator and take ,y as the bare 
density-density Green function, then we derive that 

- nB(be9 0 + U') ] .  (4.8) 

This equation has not been derived previously in the Green-function approach. Here ~ ( k )  
is the dielectric function and 

&(pi, Be: k) = ( ~ ; ' ( k ) ) ~ .  

In the above nB(k0, @) = l/[exp(gko) - 11. up(w, q) is  the spectral function of the phonon 

uP(k) = Im (DW = (I/H)[Y(o/w]/[(G - 0:)' + (v(k)/20$]. 

If we take ye = 0 then UA'(k) = n~(ko,PJ. (4.8) recovers the equation given in [IS] and 
\24]. It is also obvious that when 61 = Be, it recovers that obtained by Mahan [26]. 
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4.2. ELR of hot electrons 

Theoretical study of the ELR of hot electrons in semiconductors is quite controversial. The 
phenomenological formula was firsf given by Kogan [Z]. It was used to interpret the 
experimental data on the hot-electron relaxation in polar semiconductors by Das Sarma and 
his co-workers 151. However as demonstrated by Dharma-wardana [3], the Keldysh method 
does not produce the results claimed by Das Sarma ef a1 . 

Now we shall use the formulation established in the last section to investigate the 
problem. The UR can be formulated in linear-response theory as [28] 

(4.9) 

If we ignore the modification of the electron Green function from the phonon-electron 
interaction and consider the bubble diagram (figure 1) for the phonon field, then we can 
derive easily 

where up is the full phonon spectral function that was given in the last subsection. Write 
out &(pi, fie; q. w )  repetitively: 

(4.11) 

It is worth noting that when we take the limit yp -+ 03, the above E m  formula recovers 
exactly that obtained by Kogan. On the other hand, if yp << ye. the electron-phonon 
interactions will quickly thermalize the phonons and electrons to the same temperature, i.e. 
n i ( p i .  Be; k )  ne(&, k) .  Therefore ELR Y 0. In this case, our steady-state approximation 
of ELR is not valid. 

A simple calculation shows that -ANm I n6(,5'i, Be; q. U) -ne@. U )  in our approach 
is different from that obtained by the Keldysh method [3] from (5) in [29]. In our approach, 
the quantity -AN,, cannot be put into the following form as declared by several authors 
[29,301: 

&"I= [Yp/ (Yp+Yc) ] [ns (BcrW)-nB(b i ,o ) ] .  (4.12) 

This form can be only valid if we take Q as unity, or ignore the negative branch of the 
phonon energy spectrum in our theory. 

I also used the Keldysh method to inspect the controversy. I was convinced that the 
renormalization of the thermal reservoir was ignored in the Keldysh method. To specify my 
argument, I briefly repeat the Keldysh-method approach. The Keldysh method starts with 
a density matrix p = exp(-,!JH) with H being a total Hamiltonian. Then one can simply 
choose a proper time contour in the interaction picture, and then obtains a thermal-density 
matrix PO = exp(-gHo). In the two-temperature case, the calculation in the Keldysh 
method 1301 stam with the density matrix po = exp(-&He - @,Hi), which has two thermal 
parameters. Here He and Hi are the free Hamiltonians for electrons and ions respectively. 
However the original density matrix is p = exp(-pH), which bears a single thermal 
parameter B. The transformation from the original density matris p to the new density matrix 
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po is not clear in the Keldysh method. In the Keldysh method the phonon relaxation y is 
simply the sum of ye and y,, i.e. y = ye+yp while the TFD result is y 2  = y;? +y;+2Qytyp, 
see (4.6). To make the result in the Keldysh method equal to the TFD result, one has to 
assume Q = I ,  which is approximately true at 'Fe N 6. Therefore in my view, the Keldysh 
method may be only approximately valid for the case f i i  N fie. Considering the parameters 
chosen by Dharma-wardana, the conclusion in 131 is qualitatively valid. 

5. Summary 

In the present paper, I have described the TFD method in dealing with many-body problems. 
For comparison, I discussed the Keldysh method and pointed out its possible difficulty and 
limitation. Differing from the Keldysh or Matsubara methods, TFD is an operator method 
which does not rely on a density matrix. TFD offers an altemative way of calculating thermal 
properties, which is especially helpful when the thermal averaging is not clear. A general 
structure of the Green functions in TFD was formulated in such a way that it can be readily 
used to study both equilibrium and non-equilibrium many-body problems. Application to 
hot-electron ELR and dynamical resistivity was detailed. Our ELR formula differs from that 
derived by the Keldysh method. A comparison was given in the text. 
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